Análisis y detección de fallas en motores eléctricos aplicando algoritmos de inteligencia artificial

dc.contributor.advisorValdiviezo Espinoza, Juan Juniores
dc.contributor.authorOdar Chero, Brayand Alejandroes
dc.coverage.spatialPerúes
dc.date.accessioned2023-10-05T22:44:18Z
dc.date.available2023-10-05T22:44:18Z
dc.date.issued2023-10-05es
dc.date.submitted2023-09es
dc.description.abstractLa Inteligencia Artificial (IA) ha transformado diversos ámbitos de la industria, facilitando la automatización, optimización y, consecuentemente, potenciando la eficiencia de los procesos productivos. Uno de los ámbitos más prometedores de la IA en la industria es el mantenimiento predictivo, caracterizado por la habilidad de prever desviaciones o fallos en maquinarias antes de que estas se manifiesten. Esta anticipación permite una intervención oportuna, reduciendo tiempos muertos y pérdidas económicas asociadas a paradas inesperadas de la producción. En este contexto, las Redes Neuronales Recurrentes (RNN), y en particular las Long Short-TermMemory (LSTM), se han consolidado como herramientas imprescindibles para estas tareas, gracias a su capacidad para retener y procesar información a lo largo de secuencias extensas, logrando detectar patrones y anomalías que insinúan un posible fallo. No obstante, las LSTM, no están exentas de desafíos puesto que enfrentan dificultades de exactitud y confiabilidad de su modelo cuando se trata de secuencias de datos discontinuas o irregulares. Esto se convierte en un problema en sectores industriales, como el pesquero, donde la producción es por temporadas y la toma de datos no es continua. Ante este escenario es donde el modelo Red Neuronal de Memoria a Largo Plazo Atencional Multivariante (MA-LSTM) presenta una solución innovadora. Aunque originalmente fue desarrollado para aplicaciones en medicina y finanzas, este modelo se combina con la robustez de las LSTM ofreciendo mecanismos de atención diseñados para manejar datos multivariados. Estos mecanismos permiten que el modelo priorice y preste atención a partes específicas de la entrada según su relevancia, lo que lo hace especialmente apto para lidiar con secuencias irregulares. Para evidenciar la eficacia del modelo MA-LSTM en un entorno industrial real, se llevó a cabo un estudio en campo con un decantador centrífugo, maquinaria comúnmente utilizada para separar sólidos de líquidos en diversas industrias. Al aplicarlo a este equipo, se pudo demostrar su aptitud para predecir fallas con una precisión considerable, incluso cuando los datos presentaban secuencias discontinuas o irregularidades. Este caso de estudio no solo confirma la idoneidad del MA-LSTM para enfrentar desafíos en contextos industriales específicos, sino que también sugiere su potencial aplicación en otros ámbitos industriales con desafíos similares en el mantenimiento predictivo.es
dc.format.extent5,43 MBes
dc.format.mimetypeapplication/pdfes
dc.identifier.citationOdar. B. (2023). Análisis y detección de fallas en motores eléctricos aplicando algoritmos de inteligencia artificial (Tesis para optar el título de Ingeniero Mecánico-Eléctrico). Universidad de Piura. Facultad de Ingeniería. Programa Académico de Ingeniería Mecánico-Eléctrica.es
dc.identifier.urihttps://hdl.handle.net/11042/6221
dc.languageEspañoles
dc.language.isospaes
dc.publisherUniversidad de Piuraes
dc.publisher.countryPEes
dc.relation.requiresAdobe Readeres
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rights.holderBrayand Odar Cheroes
dc.rights.licenseAttibution-NonComercial-NoDerivatives 4.0 Internacionales
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad de Piuraes
dc.sourceRepositorio Institucional Pirhua - UDEPes
dc.subjectMotores eléctricos -- Mantenimiento -- Automatizaciónes
dc.subjectInteligencia artificial -- Mantenimiento -- Automatizaciónes
dc.subjectRedes neuronales (Computadores) -- Aplicaciónes
dc.subject.ddc629.895es
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.01es
dc.titleAnálisis y detección de fallas en motores eléctricos aplicando algoritmos de inteligencia artificiales
dc.typeinfo:eu-repo/semantics/bachelorThesises
renati.advisor.dni47107712es
renati.advisor.orcidhttps://orcid.org/0000-0001-7883-1742es
renati.author.dni70489659es
renati.discipline713076es
renati.jurorLizana Bobadilla, Víctores
renati.jurorQuispe Chanampa, Carlos Nicoláses
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales
renati.typehttps://purl.org/pe-repo/renati/type#tesises
thesis.degree.disciplineIngeniería Mecánico-Eléctricaes
thesis.degree.grantorUniversidad de Piura. Facultad de Ingenieríaes
thesis.degree.nameIngeniero Mecánico-Eléctricoes
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
IME_2350.pdf
Size:
5.43 MB
Format:
Adobe Portable Document Format
Description:
Archivo%20principal
No Thumbnail Available
Name:
Reporte_Odar-Chero.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
Description:
Reporte Turnitin
No Thumbnail Available
Name:
Áutorización_Oda-Chero.pdf
Size:
408.68 KB
Format:
Adobe Portable Document Format
Description:
Autorización de publicación